Reply to comments on 'On a proposed new test of Heisenberg's principle'

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1982 J. Phys. A: Math. Gen. 153379
(http://iopscience.iop.org/0305-4470/15/10/040)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 15:00

Please note that terms and conditions apply.

COMMENT

Reply to comments on 'On a proposed new test of Heisenberg's principle'

M C Robinson
Departamento de Fisica, Universidad de Oriente, Cumana 6101, Venezuela

Received 11 November 1981

Abstract

It is shown that the claims of Home and Sengupta and of Singh to have discovered fallacies in our analysis of a proposed, technically feasible test of Heisenberg's uncertainty principle are based on misunderstandings.

Recently, Home and Sengupta (1981) claimed to have discovered a logical fallacy in our analysis of a proposed, technically feasible experiment to test Heisenberg's uncertainty principle (Robinson 1969, 1980). We shall show that their argument is based on a misunderstanding of our use of the symbol Δx.

The proposed experiment consists of two position detectors, D_{1} and D_{2}, at x_{1} and x_{2}, separated by a velocity selector which permits the passage, one at a time, of only those particles that leave D_{1} with a velocity in the range ($v_{\mathrm{s}}-\delta v_{\mathrm{s}}, v_{\mathrm{s}}+\delta v_{\mathrm{s}}$) parallel to the x axis. The uncertainty in the momentum of such a particle is thus

$$
\begin{equation*}
p=m \Delta v_{\mathrm{s}}<m \delta v_{\mathrm{s}} \tag{1}
\end{equation*}
$$

while the particle is passing through the selector. The RMS spread of the wavepacket is given by

$$
\begin{equation*}
\Delta x \geqslant \hbar / 2 m \Delta v_{\mathrm{s}}>\hbar / 2 m \delta v_{\mathrm{s}} \tag{2}
\end{equation*}
$$

If, as is usually assumed, $|\Psi|^{2}$ is the probability density of position, then the detector D_{2} can register the presence of the particle at any instant during the time the wavepacket passes x_{2}. Therefore, if these measurements are repeated several times, there will be fluctuations in the times of flight with a RMS value

$$
\begin{equation*}
\Delta t=\Delta x / v_{\mathrm{s}} \tag{3}
\end{equation*}
$$

Thus, in general, the time of flight velocity will be

$$
\begin{equation*}
v_{\mathrm{t}} \equiv\left(x_{2}-x_{1}\right) /\left(t_{2}-t_{1}\right) \neq v_{\mathrm{s}} . \tag{4}
\end{equation*}
$$

If, however,

$$
\begin{equation*}
v_{\mathrm{t}} \equiv\left(x_{2}-x_{1}\right) /\left(t_{2}-t_{1}\right)=v_{\mathrm{s}} \tag{5}
\end{equation*}
$$

for every particle which passes through the velocity selector, then Δx in (2) does not represent the uncertainty in position.

Furthermore, since x_{1} and x_{2} are arbitrary, the truth of (5) would imply

$$
\begin{equation*}
\left(x-x_{1}\right) /\left(t-t_{1}\right)=\left(x_{2}-x\right) /\left(t_{2}-t\right)=v_{\mathrm{s}}=v_{\mathrm{t}} \tag{6}
\end{equation*}
$$

for all values of x and t in the intervals $\left(x_{1}, x_{2}\right)$ and $\left(t_{1}, t_{2}\right)$. It would then be possible
to measure $v_{\mathrm{s}}, x_{1}, x_{2}, t_{1}, t_{2}$ with sufficient precision that

$$
\begin{equation*}
\Delta x_{\mathrm{p}} \Delta p<m\left(\delta v_{\mathrm{s}}\right)^{2}\left(t_{2}-t_{1}\right)<\hbar / 2 \tag{7}
\end{equation*}
$$

In (7), Δx_{p} refers to the uncertainty in position, and if (5) is confirmed experimentally, then $\Delta x_{\mathrm{p}}<\Delta x$ where Δx is given by (2). In our previous articles we unfortunately did not add the subscript to Δx_{p} in (7), assuming it would be understood that Δx in (2) referred to the length of the wavepacket and in (7) to the uncertainty in position if (5) is found experimentally.

This ambiguity in our notation has apparently caused some confusion.
We now consider the criticisms of Singh (1981) who correctly asserts that 'one does not know the momentum at time t_{1} ' since the momentum changes abruptly when the particle is detected at D_{1}. However, we fail to see the relevancy of this since we are concerned with the possibility of being able to calculate the position and momentum of the particle in an open interval $t_{1}<t<t_{2}$.

In our opinion, some of Singh's other statements are not altogether correct. Thus he states '. . the quantity $m\left(x_{2}-x_{1}\right) /\left(t_{2}-t_{1}\right)$ is the momentum of the particle after the measurement (at x_{1} at time t_{1}) \ldots. This viewpoint, while valid in the statistical interpretation (Landé 1965, Popper 1967, Ballentine 1970, Angelidis 1977) contradicts the usual interpretation which would identify the momentum with $m v_{\mathrm{s}}$. In general, time of flight measurements cannot be used to determine the momentum in the open interval $\left(t_{1}, t_{2}\right)$ since the indetermination, $\Delta p \geqslant \hbar\left(2 \Delta x_{1}\right)$, is not removed by the second determination of position at x_{2}, otherwise the uncertainty principle would have little validity (Schrödinger 1955). (See also Heisenberg 1930, pp 20, 25 in the Dover edition.) As far as the pilot wave interpretation is concerned, time of flight measurements ordinarily give the average velocity of the particle since the velocity fluctuates rapidly except when the particle is in a momentum eigenstate as in our proposed experiment (Andrade e Silva 1967).

We do not agree that we have suggested a 'thought experiment', but rather a 'technically feasible experiment' without 'unphysical assumptions'. We did not assume that ' $v_{\mathrm{t}}=v_{\mathrm{s}}$ for every repetition of the experiment'; we simply pointed out that such a result would be in agreement with the pilot wave interpretation but not with conventional quantum mechanics. Finally, as shown in our paper, the fluctuations in v_{t} due to the uncertainty in the selector velocity, δv_{s}, would be negligible compared with the fluctuations in v_{t} predicted by Heisenberg's principle. $v_{\mathrm{t}}=v_{\mathrm{s}}$ obviously means $v_{\mathrm{s}}-\delta v_{\mathrm{s}} \leqslant v_{\mathrm{t}} \leqslant v_{\mathrm{s}}+\delta v_{\mathrm{s}}$.

References

Andrade e Silva J 1967 C. R. Acad. Sci., Paris 264909
Angelidis Th D 1977 Found. Phys. 7431
Ballentine L E 1970 Rev. Mod. Phys. 42358
Heisenberg W 1930 The Physical Principles of Quantum Theory (Chicago: University of Chicago Press) (Reprinted 1950 New York: Dover)
Home D and Sengupta S 1981 J. Phys. A: Math. Gen. 14539
Landé A 1965 New Foundations of Quantum Theory (Cambridge: CUP)
Popper K R 1967 in Quantum Theory and Reality ed M Bunge (New York: Springer)
Robinson M C 1969 Can. J. Phys. 47963
——1980 J. Phys. A: Math. Gen. 13877
Schrödinger E 1955 Nuovo Cimento 15
Singh I 1981 J. Phys. A: Math. Gen. 142171

